Milestone I Presentation

FPGA-Based Machine Learning on a Drone

Capstone Team 109

Peter Deutsch me@peterdeutsch.ca

Muchen He i@muchen.ca

Arthur Hsueh ah11962@outlook.com
Meng Wang wzfftxwd@gmail.com
Ardell Wilson ardellw96@gmail.com

https://capstone-skynet.github.io

Presentation Overview

Context and Purpose

Requirements

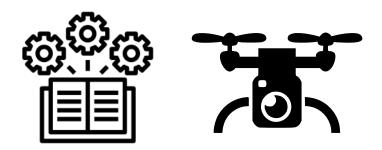
Constraints

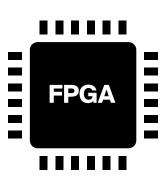
Viability of the Project

Risks

Risk Mitigation

Solution Path



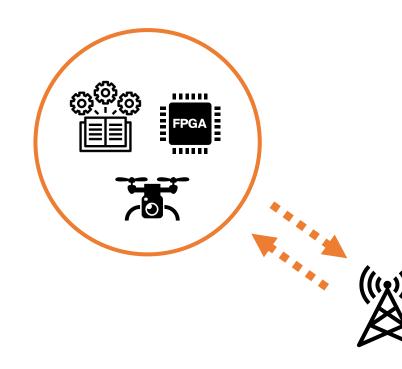


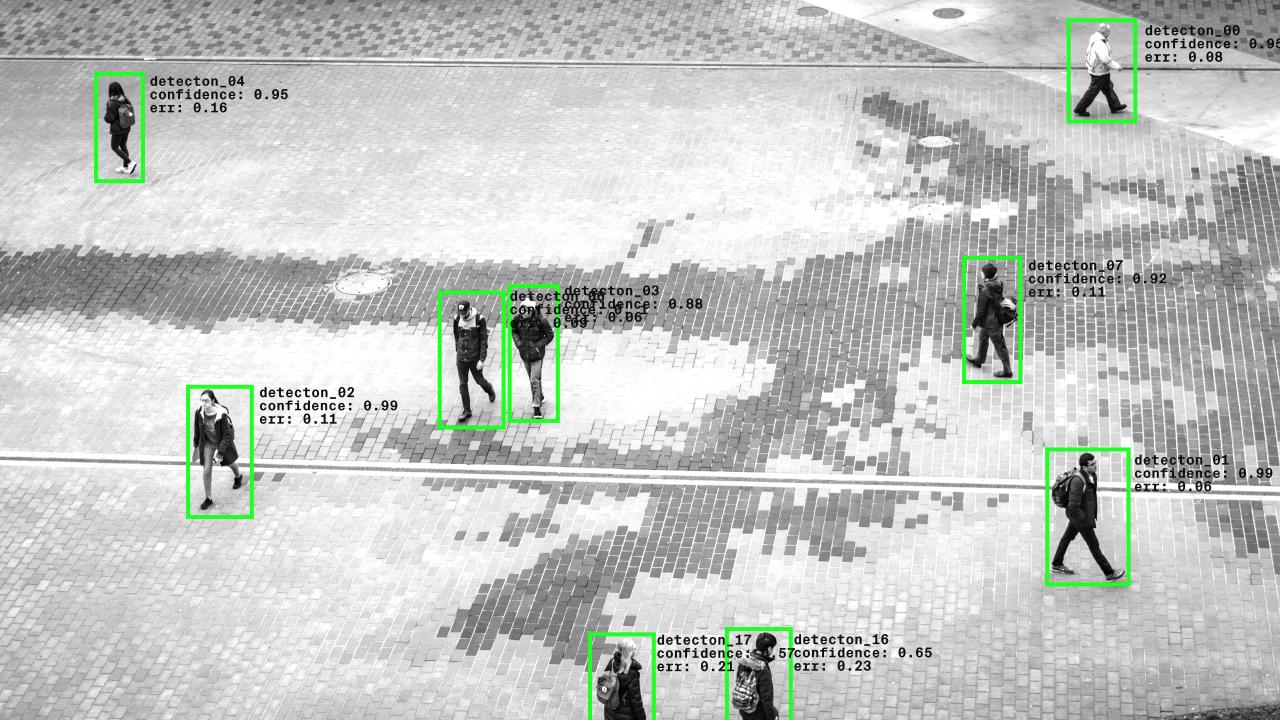
Context & Purpose

Increasing *machine learning* and *drone* applications

No existing combination of FPGA + ML + drone on the market

Context & Purpose


Want to combine all of them → computing platform


Accelerate ML using FPGA FPGA on deployed on the drone

For client's ML research

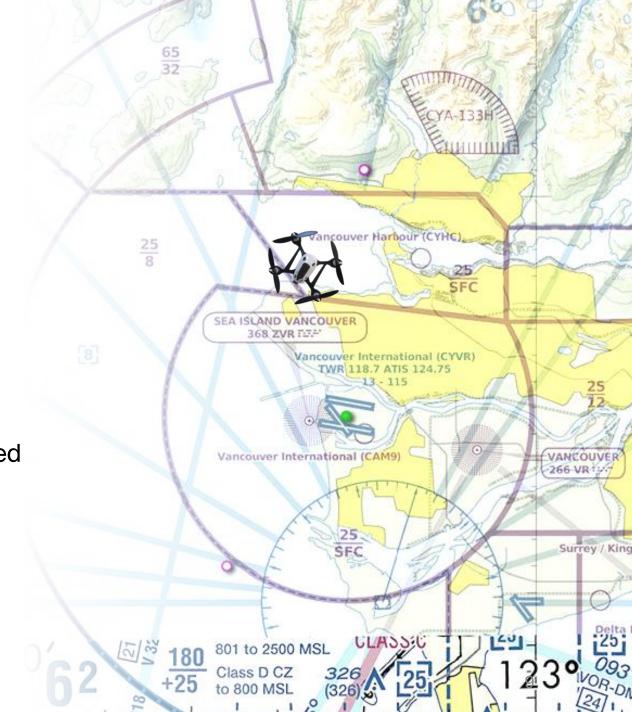
Communicate with ground station

Detect pedestrians from above

Requirements & Constraints

Integrated Drone Requirements

- Capable of flying with the computing platform
- Flight duration at least 10 minutes
- Remote controlled by the pilot


Drone Legal Requirements

- Operation is compliant with Transport Canada
- Tests inside YVR controlled airspace is permitted

Government of Canada

Gouvernement du Canada

Data Transmission Requirements

- Data processed on the drone transmitted to ground station
- Ground station receives and display data to the operator
- Transmission via WiFi (2.4GHz or 5.2GHz)

Machine Learning Requirements

- Machine learning model fits on FPGA
- Model detects pedestrians and outputs bounding boxes

Data Transmission Requirements

- Data processed on the drone transmitted to ground station
- Ground station receives and display data to the operator
- Transmission via WiFi (2.4GHz or 5.2GHz)

Machine Learning Requirements

- Machine learning model fits on FPGA
- Model detects pedestrians and outputs bounding boxes

Constraints

Time & Budget

Limited to C\$1,000

Limited time to perform 2 sub-projects

Coordination and leadership is challenging

Future-Proofing

FPGA chip area big enough for future ML models

Power & Weight

Battery power is limited

Weight and power draw affects flight duration

Portability

Data Transmission

Limited bandwidth for data

Limited power emission

Limited range

Viability

Assess system feasibility on 3 objectives:

Integration of FPGA with a Drone

2

Air-to-Ground Data Transmission

3

ML Implementation on FPGA

Viability

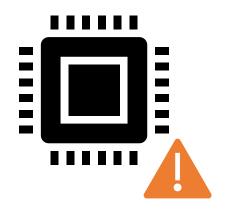
All three objectives individually has existing solutions

Integration of FPGA with a Drone

flight controller

Air-to-Ground Data Transmission

ML Implementation on FPGA


Viability

Combination of the three will further this field of research

This project is a **proof-of-concept**

Risks

Hardware

Flight crashes

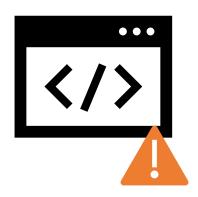
Loss of FPGA

Loss of drone

Management

Insufficient commitment

Poor task management


Poor decision making

Legacy

Low repairability / maintainability

Client doesn't know how to operate

Software

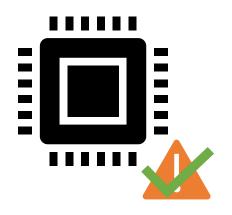
Tech. debt

Inadequate documentation

Risk Management

We keep track of an updated copy of the *risk profile*

Active mitigation on risks with index ≥ 0.4


Triage tasks to mitigate risk

Weekly update on risk status

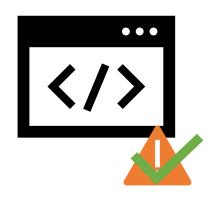
Passively monitoring on risks with index < 0.4

Table 2: Risk Profile			
Risk description	Likelihood	Impact	Risk (↓)
Drone flight hardware (flight controllers, radio, motors) cannot func- tion due to crashes and/or damage.	0.9	1.0	0.90
Payload is too heavy which significantly increases drone motor re- quirements and significant reduction in flight duration.	0.8	0.8	0.64
Accidents that damage the drone and computation equipment that require extra budget that we may not have.	0.6	0.9	0.54
Total loss of drone hardware and payload during flight.	0.5	1.0	0.50
Not enough time commitment from team members.	0.7	0.7	0.49
Access to tools and shops for modifying and repairing drone hard- ware is inadequate or non-existent.	0.6	0.8	0.48
Underestimation of project scope or work required, leading to insuf- ficient time management and burn-outs.	0.5	0.9	0.45
Payload is too heavy which exceeds total take off weight.	0.4	1.0	0.40
Legacy documents for the project are insufficient, resulting in poor maintainability/extensibility for the client.	0.7	0.5	0.35
Financial inefficiencies leading to budget overruns or lack of capital.	0.4	0.8	0.32
Constrained to purchase lower-quality components due to budget, resulting in lower performance	0.6	0.5	0.30
Team is indecisive or cannot make a timely decision — resulting in delay.	0.4	0.6	0.30
Development and management technique/methodology is not effec- live, leading to productivity losses	0.4	0.7	7 0.28
Not enough time to work on documentation.	0.7	0.	4 0.28
Vot enough machine learning training data.	0.5	0.	5 0.25
Not enough FPGA logic elements to implement a desired ML model.	0.5	5 0.	5 0.25
ailure to acquire regulatory compliance resulting in inability fly rone legally.	0.0	3 0.	.7 0.21
he software, tools or development environment for the project is adequate.	0.4	4 0	.5 0.20
nowledge and skill regarding ML is insufficient.	0.	5 0	.4 0.20
chnical debt paydown impacts project timeline.	0.	4 0	0.5
liverables fail to meet client's expectations.	0.	2 0	0.9 0.18
ent demands modification to the scope and requirements of the nect that leads to delays or leature cuts.	0.	3 (0.6 0.18

Risk Management

Hardware

- Follow safety protocol
- Only power on when absolute ready

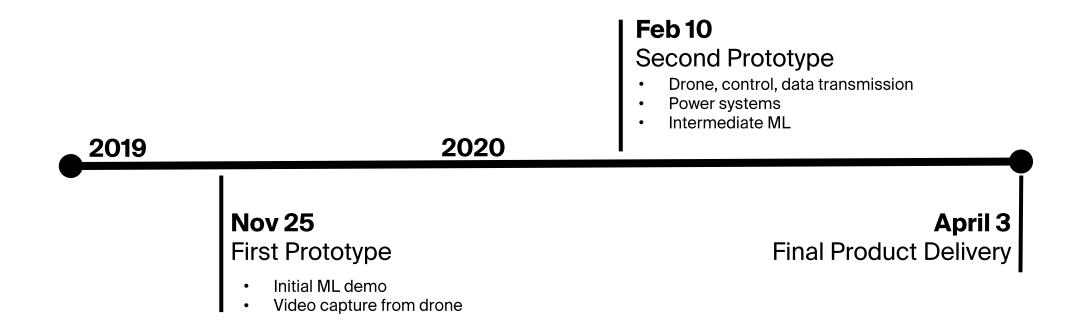

Management

- Weekly updates and status report on assigned tasks
- Timeline closely tracked

Legacy

Actively updating all documents alongside changes

Software


- Version tracking
- Code review

Solution?

Deliverables

Deliverable Dates

Immediate Steps

- Function over scale
- Integrate existing model

- Create purchasing plans
- Tool setup takes time

- Drone registration
- Pilot and radio certifications

Context & Purpose

Increasing machine learning and drone applications

No existing combination of FPGA + ML + drone on the market

Context & Purpose

Want to combine all of them -> computing platform

Accelerate ML using FPGA FPGA on deployed on the drone

For client's ML research

Communicate with ground station

Detect pedestrians from above

Requirements

Drone Legal Requirements

 Operation is considered with Torosport Canada Tests inside YVR controlled sitspace is permitted

6 Corects (ArCorects

Requirements

- Data processed on the drone transmitted to ground station
- Casued station receives and display data to the operator
 Transmission via WPI (2.45Hz or 5.25Hz)

200-0-8

Requirements

Machine Learning Requirements

Machine learning model fits on FPGA
 Model detects pedestrians and outputs bounding boxes

*

Constraints

FPGA ship area bi models

Limited to CBL000 enough for future BB

perform 2 sals-projects Coordination and leadership is challenging

200-0-0

Time & Budget

Limited time to

Power & Weight

Weight and power draw affects flight duration Portability

Limited bandwidth for Limited power emission

Limited range

Viability

Assess system feasibility on 3 objectives:

Integration of FPSA with

Air-tu-days and Data

ML Implementation on FPGA.

309-040

Viability

All three objectives individually has existing solutions

Viability

Combination of the three will further this field of research

This project is a proof-of-concept

Hardware

Flight crashes

Loss of FPGA

Loss of drame

200-0-0

309-04

Poor tank management

Poor decision making

Tech, debt **Inndequate**

Triage tasks to mitigate risk. Weekly update on risk status Planetroly monitoring on risks with index < 0.4

Immediate Steps

Risk Management We keep track of an updated copy of the stat profile

Active mitigation on risks with index a 0.4

Risk Management

· Follow safety

Only power or

when absolute 200-0-8

grotopol

Meekly updates and

status report on assigned tasks

Timeline closely

Deliverables

200-040

1x

1×

5×

Deliverable Dates

Start Small

Start Quickly

Create purchasing plans Tool setup takes time Integrate existing reodel

2017/01/01

Milestone I Presentation

FPGA-Based Machine Learning on a Drone

Capstone Team 109

Peter Deutsch me@peterdeutsch.ca

Muchen He i@muchen.ca

Arthur Hsueh ah11962@outlook.com
Meng Wang wzfftxwd@gmail.com
Ardell Wilson ardellw96@gmail.com

https://capstone-skynet.github.io

